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High  power-to-weight  ratio,  good  radiation  resistance,
and  low  manufacturing  cost  enable  perovskite  solar  cells
(PSCs) to be possibly used in space[1].  Different from terrestri-
al  applications,  PSCs used in  space will  face cosmic radiation,
e.g.,  electrons,  protons,  neutrons,  gamma rays,  X-rays,  ultravi-
olet  (UV)  rays,  etc.  (Fig.  1(a)),  harming  their  long-term  opera-
tional  stability.  Electrons  are  the  most  common  high-energy
particles  in  space.  A  series  of  terrestrial  experiments  mimick-
ing electrons in the space environment were carried out, show-
ing  that  PSCs  can  be  deteriorated  upon  exposure.  Al-Jassim
et al.  elucidated two failure pathways for perovskite films un-
der electron-beam (e-beam) exposure through cathodolumin-
escence (CL) signals variation, which are knock-on-induced de-
fect formation and heat-induced phase transformation[2].  Gao
et al. revealed the decomposition process of MAPbI3 under e-
beam exposure by in-situ TEM[3]. The structural change was ini-
tiated  by  the  loss  of  I  ions  to  form  MAPbI2.5,  followed  by  the
loss  of  MA  ions  to  form  MAyPbI2.5–z,  and  ended  up  with  PbI2

(Fig. 1(b)). Yan et al. observed severe short-circuit current dens-
ity (Jsc) decrease after electron exposure, which was mainly at-
tributed  to  the  reduced  substrate  transmittance  caused  by
glass “coloring” (Fig. 1(c))[4]. Similar phenomenon was also ob-
served when soda-lime glass was irradiated by protons[5] and
gamma rays[6], thus the irradiation tolerance of space-used sub-
strate is demanded.

Compared  with  electrons,  protons  have  a  higher  mass
and  may  cause  severe  damage.  So  far,  the  influence  of  pro-
ton  irradiation  has  been  studied  mostly  on  unencapsulated
PSCs under low-energy proton irradiation (50 or 150 keV) and
encapsulated  PSCs  under  high-energy  irradiation  (20  and
68 MeV). Low-energy protons could induce more damage be-
cause  most  of  them  stop  in  the  device  interior,  while  high-
energy  protons  pass  through  the  device[5].  Nickel et  al.  stud-
ied the irradiation hardness of MAPbI3 PSCs under 68 MeV pro-
ton  irradiation  with  a  total  dose  of  1.02  ×  1013 p/cm2.  The
device  performance  unexpectedly  increased  after  irradiation,
which  was  attributed  to  the  reduced  SRH  recombination
loss  (Fig.  1(d))[7].  They  speculated  that  the  proton-doping-
induced  shallow  energy-level  defects  compensated  the  im-
pact  of  MA-escape-induced  deep  energy-level  defects.  In
their  subsequent  study,  they  conducted  proton  irradiation
test  on  Cs0.05MA0.17FA0.83Pb(I0.83Br0.17)3 PSCs  under  the  same
condition.  The  photoluminescence  (PL)  decay  curves  indic-

ated that the carrier lifetime was prolonged after 68 MeV pro-
ton  irradiation.  A  kinetic  model,  in  which  the  trap  states  in-
duced by proton irradiation slowly release the trapped minor-
ity carriers, could perfectly fit the experimental results[8].

When cosmic rays (e.g. protons) passing through the atmo-
sphere  at  low earth  orbit  (LEO)  or  spacecraft  shielding,  a  cer-
tain  amount  of  neutrons  are  created.  Cacialli et  al.  reported
that  fast  neutrons  (energy ≥ 1  MeV)  interact  with  perovskite,
causing  atomic  displacement[9],  which  induces  Frenkel  de-
fects.  These  defects  acted  as  unintentional  dopants,  increas-
ing  open-circuit  voltage  (Voc)  and  reducing  leakage  current.
Noticeably,  unlike  light-induced  degradation,  fast  neutron-
induced degradation is permanent and irreversible.

Gamma  rays,  with  energy  from  a  few  keV  to  ~8  MeV,
have  the  strongest  energy  in  the  electromagnetic  spectrum
and the highest penetrating ability. Huang et al. used gamma
rays  of  0.42  rad/s  to  irradiate  Cs0.05FA0.81MA0.14PbI2.55Br0.45

solar  cells[6].  The  power  conversion  efficiency  (PCE)  de-
creased  to  85%  of  the  initial  value  after  first  2  h,  declined
slowly between 2–100 h, and kept stable between 100–1410 h.
The  initial  PCE  attenuation was  attributed  to  ion  displace-
ment in the perovskite. Then, ions slowly returned to their ori-
ginal lattice positions, leading to the recovery of PCE. Yang et
al. irradiated FA0.945MA0.025Cs0.03Pb(I0.975Br0.025)3 PSCs at a high-
er intensity (50 rad/s)  and observed the formation of δ-phase
FAPbI3

[10].  Troshin et  al.  irradiated  perovskite  by  using
gamma  rays  of  4.2  rad/s  with  an  accumulated  dose  up  to  50
krad.  PL spectra exhibited an increase in peak intensity and a
red shift in peak position. They thought that gamma rays pro-
mote  phase  segregation via forming  I-rich  and  Br-rich  do-
mains[11].  By  excluding  the  influence  of  glass,  they  compared
the  stability  of different  perovskites  upon  gamma  rays  irradi-
ation.  MAPbI3 presented  the  highest  stability  because  of  its
unique  self-healing  nature  (Fig.  2(a)).  At  the  surface,  MAPbI3

can easily decompose into CH3I,  NH3 and PbI2.  Under gamma
rays irradiation, radicals of the volatile species will form and re-
act  to  form  MAI  again,  which  will  further  react  with  PbI2 to
form MAPbI3

[12].
By  using 1486 eV X-ray to radiate MAPbI3,  the perovskite

surface  was  damaged,  causing  the  formation  of  crystalline
PbI2 and  the  evaporation  of  NH3I[13].  Cappel et  al.  indicated
that  different  perovskites  followed  different  decomposition
modes  under  strong  X-ray  irradiation.  For  CsPbBr3,  X-rays
caused  the  formation  of  metallic  Pb,  CsBr  and  Br2,  evidenced
by  a  significant  decrease  in  bromine  content  (Fig.  2(b)).  For
Cs0.17FA0.83PbI3,  X-rays  caused  the  degradation  of  FA+,  yield-
ing a  Pb/I  ratio  of  1  :  2  but  without  the  formation of  metallic
Pb[14].
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In  space,  the  solar  spectrum  becomes  AM0,  which  com-
prises  additional  UV  irradiation  than  AM1.5.  Generally,  water
and  oxygen  could  participate  in  the  degradation  of  per-
ovskites  under  UV  light[15].  Recently,  Li et  al.  indicated  that
the stability of PSCs with a TiO2 layer was affected by UV light
even in inert environment. The UV-induced degradation path-
way  is  described  in Fig.  2(c)[16].  Under  UV  light,  Ti3+-VO (oxy-
gen vacancy) reacts with the photogenerated holes and trans-
forms to active Ti4+-VO trap states,  leading to a loss of  photo-
carriers.  Ti4+-VO oxidizes  and  produces .  species  further
accelerate  the  decomposition  of  perovskite[17].  Al2O3,
Zn2SnO4,  ZnTiO3 and  NiOx serving  as  photocatalysts  may  fol-

low a similar degradation mechanism.
PSCs  demonstrate  superior  stability  than  silicon  solar

cells  under cosmic rays,  but they are certainly not indestruct-
ible.  Some  degradation  mechanisms  are  proposed  and  more
are yet to be explored.
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Fig. 1. (Color online) (a) Perovskite solar cells in space suffer various radiations. (b) Simulated electron diffraction patterns showing the structural
evolution of  MAPbI3 under  e-beam irradiation.  Reproduced with  permission[2],  Copyright  2018,  Springer  Nature.  (c)  Transmittance  spectra  for
glass  substrates  after  e-beam  irradiation.  Reproduced  with  permission[3],  Copyright  2020,  American  Chemical  Society.  (d) β coefficient vs Voc

curves. Reproduced with permission[7], Copyright 2017, Wiley.
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Fig. 2. (Color online) (a) Schematic for self-healing mechanism in MAPbI3. Reproduced with permission[12], Copyright 2020, American Chemical So-
ciety. (b) Cs 4d, Br 3d, Pb 5d XPS spectra for CsPbBr3. Reproduced with permission[14], Copyright 2021, Royal Society of Chemistry. (c) Schematic
for UV-induced degradation of perovskite. Reproduced with permission[16], Copyright 2021, Royal Society of Chemistry.
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